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Abstract

In high stakes classification tasks such as college admissions, predicting
loan defaulting, criminal recidivism, or medical diagnoses, machine learn-
ing is often employed [Far+23][BHN23][Fel+15]. However, this does raise
concerns around the fairness and privacy-preserving nature of such classi-
fication methods, especially when drawing upon crucial protected data or
using sensitive attributes of individuals. For this paper, we define fairness
as the satisfaction of equalized odds, which serves to balance the cost of
misclassification. In the context of high-stakes classification tasks, histor-
ically marginalized and disadvantaged groups tend to experience higher
error rates, and we view equalized odds as an effective means of countering
this. We also assume that satisfying ϵ-differential privacy is sufficient in
preserving the privacy of individuals in the provided dataset. This project
introduces an approach to ensure a differentially private Support Vector
Machine (SVM) by perturbing its support vectors in the post-processing
phase. We demonstrate that this method fails to improve the upper bound
on error and fairness violations that is proven in Jagielski et al. (2019)
[Jag+19] for a generic classifier, and we explore the implications of this in
the Discussion and Future Work.
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1 Introduction

Consider a scenario in which a bank is evaluating loan applications. The bank
employs a machine learning model to predict loan default risk based on applicant
data, which includes sensitive attributes like race, gender, or income bracket.
In this high-stakes decision-making environment, major concerns arise: privacy,
interpretability, and fairness. Private data owners expect their personal infor-
mation to remain confidential, while regulators and ethical guidelines demand
that the bank’s model not unfairly disadvantage certain demographic groups.

This scenario illustrates the utility of a differentially private Support Vector
Machine (SVM) that satisfies equalized odds. Differential privacy ensures that
an individual’s inclusion or exclusion in the dataset does not significantly in-
fluence the model’s output, safeguarding sensitive information. Meanwhile, the
equalized odds criterion ensures that the model’s true positive and false positive
rates are balanced across all demographic groups, mitigating systemic bias.

This paper addresses the intersection of these two critical dimensions by
exploring the implementation of a differentially private, fair SVM. We focus on
achieving privacy through post-processing perturbations to the model’s support
vectors while maintaining fairness through equalized odds. By combining these
approaches, we aim to create a classifier suitable for sensitive applications where
both ethical and regulatory standards must be met.

In the following sections, we provide background and review related work in
the domains of fairness, privacy, and SVM optimization. We then describe our
approach to introducing differential privacy and fairness constraints to SVMs
and analyze theoretical trade-offs, followed by a review of our results and ideas
for future work.

2 Previous Work

Our work builds on Jagielski et. al (2019) [Jag+19], where Jagielski et. al
define methods to construct a differentially private fair classifier through both
in-processing and post-processing, comparing each of these methods and their
viability across multiple datasets. This work draws upon equalized odds as de-
fined in Hardt, Price, Srebro (2016) [HPS16] as a notion of fairness, which we
use in this paper as well. The post-processing method in Jagielski et. al is in-
troduced as a differentially private fair learning algorithm that is an adaptation
of the fair learning algorithm defined in Hardt, Price, Srebro (2016) [HPS16], in
which a classifier is derived by selecting the classifier with the lowest error out
of all fair classifiers.

Research by Ruan et. al. (2022) [Rua+23] illustrates how in the case of
SVMs specifically, given an unfair classifier, introducing differential privacy con-
straints in post-processing will worsen metrics such as the TPR between groups
distinguished by sensitive attribute. The way that these differentially private
algorithms are designed is through three different methods: approximate mini-
mal perturbation (adding noise to the loss function of the margin classifier, also
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called objective perturbation), differentially private stochastic gradient descent
(adding noise to gradients), and private convex permutation-based stochastic
gradient descent (introducing noise to the final model parameters, also known
as output perturbation). However, Ruan et. al. also prove experimentally
that in the case of a fair model (ie. a minimal TPR gap between groups in
the dataset), introducing differential privacy does not significantly affect model
fairness.

In a similar vein, Fish, Kun, and Lelkes (2016) [FKL16] demonstrate that
fairness (in this case, in the form of statistical parity) can be achieved for a
margin boundary without a significant impact to classification error. This paper
had a significant influence on our initial efforts to achieve differential privacy
and equalized odds for an SVM, however it became clear that a more complex
approach was required to achieve equalized odds in lieu of statistical parity,
which only requires the shifting of the decision boundary for the protected group.

Zafar et. al (2019) [Zaf+19] proposes a constraint-based framework to design
fair margin-based classifiers, including SVMs. The authors propose a measure of
decision boundary unfairness, and by incorporating this measure into the train-
ing process, the framework enables a balance between accuracy and fairness.
Experiments on synthetic and real-world datasets demonstrate the framework’s
effectiveness in achieving fair classification outcomes.

Xu et. al. (2020) [XDW20] propose a new post-processing method to intro-
duce differential privacy to a classifier called DPSGD-F, which is another means
of achieving gradient perturbation, similar to differentially private stochastic
gradient descent. The motivation behind this is that the DPSGD used by Ruan
et. al. does not account for the impact on differential privacy that group sample
size and group clipping bias have.

Agarwal et. al (2018) [Aga+18] introduces a method to ensure fairness
in binary classification by reducing the problem to cost-sensitive classification
tasks. It supports fairness definitions like demographic parity and equalized
odds, producing a classifier that balances accuracy and fairness. The approach
is versatile, works with various algorithms, and shows competitive performance
across datasets compared to prior methods.

Cummings et. al. (2019) [Cum+19] studies whether privacy and fairness
are simultaneously achievable in different models, using equalized odds. The
authors prove algorithmically that it is theoretically impossible for a differen-
tially private model to achieve exact fairness, even in the case of having full
distributional access to the dataset being used. Building off of this, the authors
prove the existence of a PAC (Probably Approximately Correct) learner — a
mathematical model framework used in computational learning theory — that
is differentially private and satisfies approximate equality of true positive rates
across all values for a protected attribute (equal opportunity, a more relaxed
version of the equalized odds constraint).
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3 Background

3.1 Differential Privacy

We introduce differential privacy as a robust, mathematical means of ensuring
privacy-preserving data analysis. What differential privacy promises is that a
data subject will not be affected by allowing their data to be used in a dataset.
This means that it will be nearly impossible to identify a subject as a contribu-
tor to a dataset that follows the constraint of differential privacy. Additionally,
because differentially private algorithms inherently limit each participant’s in-
fluence on the outcome, they reduce incentives to misreport information [MT07].

Formally, a randomized algorithm M with domain N|χ| is (ε, δ)-differentially
private if for all S ⊆ Range(M) and for all databases x, y ∈ N|χ| such that
||x− y||1 ≤ 1:

P[M(x) ∈ S] ≤ exp(ε)P[M(y) ∈ S] + δ

where the probability space is over the coin flips of the mechanism M. If δ = 0,
we say that M is ε-differentially private. [DR+14]. Informally, differential
privacy protects individuals’ private information by ensuring that the output
of an analysis on a dataset remains nearly the same whether or not any single
individual’s data is included.

To implement ϵ−differential privacy in this paper, we will rely on the Laplace
mechanism to introduce noise to the data. The Laplace function samples noise
on a Laplacian distribution determined by the sensitivity of the target dataset.
We utilize the following from the Jagielski [Jag+19] paper:
Definition 1 The ℓ1-sensitivity of f : Dm → Rk is

∆f = max
D,D′∈Dm

D∼D′

∥f(D)− f (D′)∥1 ,

which measures how much the ℓ1 norm of the function f changes if up to one
entry is changed in the database.
Definition 2 (Laplace Mechanism [Dwo+06]). Given a query function f :
Dm → Rk, a database D ∈ Dm, and a privacy parameter ϵ, the Laplace mech-
anism outputs:

f̃ϵ(D) = f(D) + (W1, . . . ,Wk)

where Wi ’s are i.i.d. random variables drawn from Lap(∆f/ϵ).
Theorem 1 (Privacy vs. Accuracy of the Laplace Mechanism [Dwo+06]).

The Laplace mechanism guarantees ϵ-differential privacy and that with proba-
bility at least 1− δ, ∥∥∥f̃ϵ(D)− f(D)

∥∥∥
∞

⩽ ln

(
k

δ

)
·
(
∆f

ϵ

)
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3.2 Equalized Odds

In this paper, we define fairness through the constraint of equalized odds. Equal-
ized odds is a statistical fairness constraint requiring the equalization of true
positive rate (TPR) and false positive rate (FPR) across all values for a pro-
tected attribute. Formally, for an outcome Y , equalized odds is satisfied if pro-
tected attribute A and predictor Ŷ are independent conditional on Y . [HPS16]

P{Ŷ = 1 | Y = 1, A = a} = P{Ŷ = 1 | Y = 1, A = b}
P{Ŷ = 1 | Y = 0, A = a} = P{Ŷ = 1 | Y = 0, A = b}

The outcomes y = 0 and y = 1 represent the true negative rate and true positive
rate, respectively.

The motivation for equalized odds as a notion of fairness lies in the idea
of equal claim to acceptance [HPS16]. This definition requires that all groups
corresponding to the values a, b ∈ A have the same TPR and FPR. Therefore,
violating this constraint indicates that different groups experience different costs
of misclassification, which would align with the idea that higher error rates are
historically correlated with marginalized groups. By requiring this parity in
error rates, decision makers are incentivized to improve error rates by building
better models and collecting better data, reducing the likelihood of seeing the
positive feedback loop that we commonly associate with using machine learning
with this kind of decision making [BHN23].

3.3 Support Vector Machines

Support Vector Machines (SVMs) are a class of supervised learning algorithms
widely used for classification and regression tasks, valued for their ability to han-
dle high-dimensional data and define clear decision boundaries. SVMs identify
a hyperplane that divides data into distinct classes with the maximum possible
margin between the nearest points of each class. Because in many cases data
is not linearly separable in its original feature space, SVMs utilize a ”kernel
trick” to map data to a higher dimension where a dividing hyperplane may ex-
ist. SVMs are used for crucial decision-making tasks [Wan+10] because of this
interpretability and effectiveness in high-dimensions, and in this paper we prove
their compatibility with differentially private data and equalized odds.

We define the optimization problem and variables for a soft-margin SVM as

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

subject to yi(w · xi + b) ≥ 1− ξi, ∀i
ξi ≥ 0, ∀i

– w: Weight vector defining the orientation of the decision boundary.

– b: Bias term defining the position of the decision boundary.
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– ξi: Slack variable for the i-th data point, allowing for margin violation.

– C: Regularization parameter balancing the trade-off between maximizing
the margin and minimizing classification error.

– yi: Label of the i-th data point, typically +1 or −1.

– xi: Feature vector of the i-th data point.

– n: Total number of training data points.

[Cor95]
In this paper, we work with the support vectors, which can be defined as

the feature vectors xi which satisfy the following condition:

yi(w · xi + b) = 1− ξi

Support vectors are either on the margin or within it, defining the opti-
mal hyperplane. The position of the hyperplane is directly influenced by these
vectors. The support vectors ensure that the margin between the classes is as
wide as possible, adhering to the maximum margin principle. We also note
that typically, the number of support vectors make up a fraction of the dataset.
This means that a support vector machine does not necessarily need all of the
training examples to define the optimal decision boundary.

4 Differentially Private Fair SVM Algorithm

In this section we introduce our algorithm for differentially private fair post-
processing of an SVM with k support vectors. This algorithm is a variant of
the ”DP-Postprocessing” algorithm from Jagielski et. al, which is derived from
the paper by Hardt et. al.

This algorithm takes as input parameters determining privacy and equalized
odds constraints, the joint distribution of sensitive attributes A and binary
labels Y , and support vectors xsv

i , which define classifier Ŷ . The algorithm
uses the Laplace mechanism to introduce noise to the support vectors and joint
distribution separately, and then combines these to form joint distribution q̃ŷay.

This composite joint distribution is then input into the linear program L̃P, which
is identical to that in the Jagielski et. al paper, to get the optimal minimizer
p̃⋆. This minimizer allows us to then make formal guarantees on the satisfaction
of the privacy parameter ϵ and fairness violation parameter γ with confidence
1− β.
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Algorithm 1 ϵ-differentially private fair post-processing

Input: privacy parameter ϵ, confidence parameter β, fairness violation γ, SVM
Ŷ with k support vectors xsv

i , joint distribution q̂ay = P̂[A = a, Y = y].

→ Sample Wxsv
i.i.d.∼ Lap(2/kϵ) for all xsv

i .
→ Perturb each support vector x̂sv

i : x̂sv
i = xsv

i +Wxsv .

→ Sample Way
i.i.d.∼ Lap(2/mϵ) for P̂[A = a, Y = y].

→ Perturb q̂ay : q̃ay = P̂[A = a, Y = y] +Way.

→ Calculate q̃ŷay = P̃ [Ŷ = ŷ, A = a, Y = y].

→ Solve L̃P to get the minimizer p̃⋆.

Output: p̃⋆, the trained classifier Ŷ

L̃P: ϵ-Differentially Private Linear Program:

argmin
p

ẽrr
(
Ŷp

)
s.t. ∀a ∈ A

a̸=0
∆F̃Pa

(
Ŷp

)
⩽ γ +

4 ln(4|A|/β)
min {q̃a0, q̃00}mϵ

∆T̃Pa

(
Ŷp

)
⩽ γ +

4 ln(4|A|/β)
min {q̃a1, q̃01}mϵ

0 ⩽ pŷa ⩽ 1 ∀ŷ, a

ẽrr
(
Ŷp

)
:=

∑
ŷ,a

(q̃ŷa0 − q̃ŷa1) · pŷa +
∑
ŷ,a

q̃ŷa1

∆F̃Pa

(
Ŷp

)
:=

∣∣∣F̃Pa(Ŷ ) · p1a +
(
1− F̃Pa(Ŷ )

)
· p0a − F̃P0(Ŷ ) · p10 −

(
1− F̃P0(Ŷ )

)
· p00

∣∣∣
∆T̃Pa

(
Ŷp

)
:=

∣∣∣T̃Pa(Ŷ ) · p1a +
(
1− T̃Pa(Ŷ )

)
· p0a − T̃P0(Ŷ ) · p10 −

(
1− T̃P0(Ŷ )

)
· p00

∣∣∣
5 Proof

It is proven in the Jagielski et. al paper [Jag+19] that the l∞ norm |q̂− q̃∥∞ ≤
2 ln (

4|A|
β )

mϵ . This is derived from the theorem we’ve listed as Theorem 1 in this

paper (
∥∥∥f̃ϵ(D)− f(D)

∥∥∥
∞

⩽ ln
(
k
δ

)
·
(

∆f
ϵ

)
). For a more detailed explanation of

this derivation, see Appendix A. From this upper bound, Jagielski et. al are
able to guarantee an upper bound on the error of the perturbed classifier, as
well as an upper bound on the sensitivity of perturbed false positive and true
positive rates. Being able to bound the FPR and TPR sensitivities is beneficial
as it allows us to guarantee preservation of γ−equalized odds with perturbed
data. These upper bounds on error, FPR sensitivity, and TPR sensitivity are
listed below:
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With probability at least 1− β,

êrr
(
Ŷp̃⋆

)
⩽ êrr

(
Ŷp̂⋆

)
+

24|A| ln(4|A|/β)
mϵ

and for all a ̸= 0,

∆F̂P a

(
Ŷp̃⋆

)
⩽ γ +

8 ln(4|A|/β)
min {q̂a0, q̂00}mϵ− 4 ln(4|A|/β)

∆T̂P a

(
Ŷp̃⋆

)
⩽ γ +

8 ln(4|A|/β)
min {q̂a1, q̂01}mϵ− 4 ln(4|A|/β)

Because we are perturbing the input data {A, Y } and classifier output {Ŷ }
separately, we can determine a different upper bound accordingly as follows:

For the input data: Since we are adding noise to the same number of data
points m, sensitivity ∆f = 2

m . However, k changes to account for the reduced
number of outputs we are getting through the joint distribution {A, Y } as com-
pared to {Ŷ , A, Y }; k = 2 · |A| (as opposed to the 4 · |A| that comes from having
the added dimension of Ŷ in the joint distribution).

For the output data: We are looking only at adding noise to the support vectors
of the final classifier, so sensitivity ∆f = 2

k . Also, the k value in Theorem 1 will

decrease to k = 2 since there are two possible outputs for Ŷ .

In order to set a clear upper bound, we take the sum of the two l∞ norms
produced by the perturbations:

|q̂ − q̃∥∞ ≤
2 ln ( 2|A|

β )

mϵ
+

2 ln ( 2β )

kϵ

Now that we have established this upper bound on the |q̂− q̃∥∞ norm produced
after perturbing and combining the data, we can use it to modify the guarantees
related to accuracy and fairness that Jagielski et. al prove for their algorithm
for a generic classifier Ŷ . See Appendix A for our modified guarantees.

Since the l∞ norm is directly proportional to each of the three bounds (re-
lating to error, FPR sensitivity, and TPR sensitivity of the perturbed classifier),
we can compare Jagielski et. al’s l∞ norm with our own to understand how our
upper bounds will relate to theirs. We do this as follows:

Assume that our l∞ norm is less than or equal to theirs. This would mean
that our guarantees will be stronger than theirs (ie. we will have smaller up-
per bounds on error, as well as TPR and FPR sensitivity). We thus get the
inequality:
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2 ln
(

2|A|
β

)
mϵ

+
2 ln

(
2
β

)
kϵ

≤
2 ln

(
4|A|
β

)
mϵ

ln
(

2|A|
β

)
m

+
ln
(

2
β

)
k

≤
ln
(

4|A|
β

)
m

ln
(

2
β

)
k

≤
ln

(
4|A|
β

)
− ln

(
2|A|
β

)
m

ln
(

2
β

)
k

≤
ln

(
4|A|
β

2|A|
β

)
m

ln
(

2
β

)
k

≤ ln (2)

m

m · ln
(
2

β

)
≤ k · ln(2)

ln

(
2

β

)
≤ k

m
ln(2)

Exponentiating both sides:

2

β
≤ e

k
m ln(2) = 2

k
m

Solving for β:

β ≥ 2

2
k
m

β ≥ 21−
k
m

However, β ∈ [0, 1], and since the number of support vectors k ≤ the number
of data points m, we know that k

m ∈ [0, 1]. Thus, 1 − k
m ∈ [0, 1] as well. This

means that 21−
k
m ≥ 1. Thus, we find that if we assume our l∞ norm to be less

than or equal to that of Jagielski et. al, we arrive at a contradiction. So, through

proof by contradiction, we have proven that
2 ln( 2|A|

β )
mϵ +

2 ln( 2
β )

kϵ >
2 ln( 4|A|

β )
mϵ ,

which means that our SVM-specific guarantees will be worse than those proven
by Jagielski et. al in their algorithm for a generic classifier.
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6 Discussion and Future Work

The implementation of a differentially private Support Vector Machine (SVM)
under the equalized odds constraint highlights the complexities inherent in bal-
ancing privacy, fairness, and utility. Our analysis shows that perturbing support
vectors in a post-processing algorithm does not outperform the theoretical upper
bounds on misclassification error and fairness violations established in Jagielski
et al. (2019).

A notable challenge that this paper illustrates is the trade-off between pri-
vacy guarantees and fairness outcomes. By introducing differential privacy
through post-processing, the addition of noise significantly impacts the align-
ment of decision boundaries with the fairness criterion of equalized odds. This
result underscores the need for more granular methods of incorporating noise,
perhaps directly into the training process or via data-dependent perturbation
strategies.

Another limitation of our approach is its reliance on the equalized odds
fairness definition. While this metric is effective for balancing true positive
and false positive rates, it does not address other fairness concerns such as
subgroup accuracy or disparate impact, which may be more relevant in certain
applications. Future work could explore alternative fairness definitions or hybrid
approaches that balance multiple fairness objectives while maintaining privacy
guarantees.

Potential avenues for further research:

– Alternative Perturbation Techniques. Investigating methods such as noise
addition tailored to specific groups or regions of the decision boundary,
which could improve the model’s ability to satisfy fairness constraints
without significantly compromising utility.

– Empirical Evaluations. Experiments on real-world datasets and sensitive
application domains may provide better insight on the empirical error
introduce by perturbing the support vectors in post-processing.

These challenges pose relevant avenues for future work as machine learning con-
tinues to be deployed in sensitive, high-stakes decision-making environments.
Theoretical and empirical advancements in privacy-fairness trade-offs have sig-
nificant implications for ethical and regulatory practices in AI.

7 Conclusion

In this work, we investigated the implementation of a differentially private Sup-
port Vector Machine classifier under the constraint of equalized odds. Our anal-
ysis and results show that even when carefully adjusting the decision boundary
through perturbation of the support vectors in post-processing, our approach
fails to improve the known theoretical bounds on misclassification error and
fairness violation. As data-driven methods continue to be deployed in sensitive
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domains, it remains crucial to understand the trade-offs and theoretical limits
involved. Attaining meaningful fairness and privacy is not merely a matter of
combining known techniques; it may require very specific algorithmic strategies,
richer theoretical frameworks, or more granular control over model training and
post-processing stages. Looking forward, developing alternative private learning
methods or incorporating alternative fairness notions could lead to notable re-
sults. Additionally, investigating more data-dependent perturbation strategies
may yield stronger theoretical guarantees.
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Appendix A

We prove the guarantees made on error, TPR sensitivity, and FPR sensitivity
here for our SVM-specific algorithm.

Claim A.1.(ℓ1 -Sensitivity of q̂ to A). As in [Jag+19], Let q̂ = [q̂ŷay]ŷ,a,y
be the empirical distribution of {Ŷ , A, Y } and let ∆q̂ be the ℓ1-sensitivity of q̂
to A.

∆q̂ = max
A,A′∈Am

A∼A′

∥q̂(A)− q̂ (A′)∥1 =
2

m

This, in conjunction with Theorem 1, gives us our l∞ norm upper bound:

|q̂ − q̃∥∞ ≤
2 ln ( 2|A|

β )

mϵ
+

2 ln ( 2β )

kϵ

Lemma A.2. Suppose mina,y {q̂ay} >
4 ln( 2|A|

β )
mϵ +

4 ln( 2
β )

kϵ . We have that with
probability ⩾ 1− β,

1.
∣∣∣ẽrr (Ŷp

)
− êrr

(
Ŷp

)∣∣∣ ⩽ 12|A| ln( 2|A|
β )

mϵ +
12|A| ln( 2

β )
kϵ ;∀p.

2. q̃ay > 0 ;∀a, y.

3.
∣∣∣F̃P a(Ŷ )− F̂P a(Ŷ )

∣∣∣ ⩽ 2 ln( 2|A|
β )

q̃a0mϵ +
2 ln( 2

β )
q̃a0kϵ

,
∣∣∣T̃P a(Ŷ )− T̂P a(Ŷ )

∣∣∣ ⩽ 2 ln( 2|A|
β )

q̃a1mϵ +

2 ln( 2
β )

q̃a1kϵ
;∀a.

4.
∣∣∣∆F̃P a

(
Ŷp

)
−∆F̂P a

(
Ŷp

)∣∣∣ ⩽ 4 ln( 2|A|
β )

min{q̃a0,q̃00}mϵ+
4 ln( 2

β )
min{q̃a0,q̃00}kϵ ,

∣∣∣∆T̃P a

(
Ŷp

)
−∆T̂P a

(
Ŷp

)∣∣∣ ⩽
4 ln( 2|A|

β )
min{q̃a1,q̃01}mϵ +

4 ln( 2
β )

min{q̃a1,q̃01}kϵ ;∀a, p.

5. p̂⋆, the optimal solution of L̂P , is feasible in L̃P .

To prove this, using our l∞ norm upper bound, we will do the following:

1. By definition of error as per the linear programs:

∀p
∣∣∣ẽrr(Ŷp

)
− êrr

(
Ŷp

)∣∣∣ ≤ Σŷ,a,y |q̃ŷay − q̂ŷay|+Σŷ,a |q̃ŷa1 − q̂ŷa1|

By definition of the l −∞ norm:

Σŷ,a,y |q̃ŷay − q̂ŷay| ≤ 4|A| · ∥q̂ − q̃∥∞
Σŷ,a |q̃ŷa1 − q̂ŷa1| ≤ 2|A| · ∥q̂ − q̃∥∞
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By transitivity, we can say:

∣∣∣ẽrr(Ŷp

)
− êrr

(
Ŷp

)∣∣∣ ≤ 12|A| ln
(

2|A|
β

)
mϵ

+
12|A| ln

(
2
β

)
kϵ

2.

∀a, y : |q̃ay − q̂ay| = |q̃1ay + q̃0ay − q̂1ay − q̂0ay|
≤ |q̃1ay − q̂1ay|+ |q̃0ay − q̂0ay|

≤
4 ln

(
2|A|
β

)
mϵ

+
4 ln

(
2
β

)
kϵ

by the stated assumption that q̂ay >
4 ln

(
2|A|
β

)
mϵ

+
4 ln

(
2
β

)
kϵ

,we can conclude that q̃ay > 0.

3. ∀a : ∣∣∣F̃P a(Ŷ )− F̂P a(Ŷ )
∣∣∣ = ∣∣∣∣ q̃1a0

q̃1a0 + q̃0a0
− q̂1a0

q̂1a0 + q̂0a0

∣∣∣∣
=

∣∣∣∣ q̃1a0 (q̂1a0 + q̂0a0)− q̂1a0 (q̃1a0 + q̃0a0)

(q̃1a0 + q̃0a0) (q̂1a0 + q̂0a0)

∣∣∣∣
=

∣∣∣∣ q̃1a0q̂0a0 − q̂1a0q̃0a0
(q̃1a0 + q̃0a0) (q̂1a0 + q̂0a0)

∣∣∣∣
=

∣∣∣∣ q̂0a0 (q̃1a0 − q̂1a0)− q̂1a0 (q̃0a0 − q̂0a0)

q̃a0 · q̂a0

∣∣∣∣
=

∣∣∣∣ q̂oa0 (q̃1a0 − q̂1a0) + q̂1a0 (q̂0a0 − q̃0a0)

q̃a0 · q̂a0

∣∣∣∣
≤ q̂0a0∥q̂ − q̃∥∞ + q̂1a0∥q̂ − q̃∥∞

q̃ao · q̂a0

=
(q̂0a0 + q̂1a0) ∥q̂ − q̃∥∞

q̃a0 · q̂a0

=
∥q̂ − q̃∥∞

q̃a0

≤
2 ln

(
2|A|
β

)
q̃a0mϵ

+
2 ln

(
2
β

)
q̃a0kϵ

similarly ∣∣∣ ˜TP a(Ŷ )− ˆTP a(Ŷ )
∣∣∣ ≤ 2 ln

(
2|A|
β

)
q̃a1mϵ

+
2 ln

(
2
β

)
q̃a1kϵ
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4. ∀a1p :∣∣∣∆F̃P a

(
Ŷp

)
−∆F̂P a

(
Ŷp

)∣∣∣
≤| F̃P a(Ŷ )P1a

+
(
1− F̃P a(Ŷ )

)
p0a

− F̃P 0(Ŷ )P10
−

(
1− F̃P 0(Ŷ )

)
p00

− F̂P a(Ŷ )p1a +
(
1− F̂P a(Ŷ )

)
p0a − F̂P 0(Ŷ )p10 −

(
1− F̂P 0(Ŷ )

)
p00|

=| F̃P a(Ŷ )p1a − F̂P a(Ŷ )p1a − F̃P a(Ŷ )p0a + F̂P a(Ŷ )p0a

− F̃P 0(Ŷ )P10 + F̂P 0(Ŷ )p10 + F̃P 0(Ŷ )p00 − F̂P 0(Ŷ )P00

=
∣∣∣(p1a − p0a)

(
F̃P a(Ŷ )− F̂P a(Ŷ )

)
+ (p00 − p10)

(
F̃P 0(Ŷ )− F̂P 0(Ŷ )

)∣∣∣
⩽

∣∣∣F̃P a(Ŷ )− F̂P a(Ŷ )
∣∣∣ ·∣∣∣ p1a − p0a

∣∣∣+ ∣∣∣F̃P 0(Ŷ )− F̂P 0(Ŷ )
∣∣∣ ·∣∣∣ p10 − p00 |

we know that |p1a − p0a| ∈ [0, 1] for all a, so:∣∣∣∆F̃P a

(
Ŷp

)
−∆F̂P a

(
Ŷp

)∣∣∣ ≤ ∣∣∣F̃P a(Ŷ )− F̂P a(Ŷ )
∣∣∣+ ∣∣∣F̃P 0(Ŷ )− F̂P 0(Ŷ )

∣∣∣
=

2 ln
(

2|A|
B

)
q̃a0mϵ

+
2 ln

(
2
β

)
q̃a0kϵ

+

2 ln
(

2|A|
B

)
q̃00mϵ

+
2 ln

(
2
β

)
q̃00kϵ


≤

4 ln
(

2|A|
B

)
min {q̃a0, q̃00}mϵ

+
4 ln

(
2
B

)
min {q̃a0, q̃00} kϵ

similarly:

∣∣∣∆T̃P a(r̂)−∆ ˆTP a(ŷ)
∣∣∣ ≤ 4 ln

(
2|A|
B

)
min {q̃a1, q̃01}mϵ

+
4 ln

(
2
B

)
min {q̃a1, q̃01} kϵ

5. The first constraint of L̃P is proven here:∣∣∣∆F̃Pa

(
Ŷp̂⋆

)∣∣∣ = ∣∣∣∆F̃Pa

(
Ŷp̂⋆

)
−∆F̂Pa

(
Ŷp̂⋆

)
+∆F̂Pa

(
Ŷp̂⋆

)∣∣∣
⩽

∣∣∣∆F̂Pa

(
Ŷp̂⋆

)∣∣∣+ ∣∣∣∆F̃Pa

(
Ŷp̂⋆

)
−∆F̂Pa

(
Ŷp̂⋆

)∣∣∣
⩽ γ +

4 ln(4|A|/β)
min {q̃a0, q̃00}mϵ

by part 4 of this Lemma and the fact that
∣∣∣∆F̂Pa

(
Ŷp̂∗

)∣∣∣ ⩽ γ( see L̂P in Ap-

pendix B).
From this, satisfying the second constraint of L̃P can be similarly shown,

and the third is trivial.
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Following Lemma A.2, with probability at least 1− β:

êrr
(
Ŷp̃⋆

)
⩽ ẽrr

(
Ŷp̃⋆

)
+

12|A| ln
(

2|A|
β

)
mϵ

+
12|A| ln

(
2
β

)
kϵ

⩽ ẽrr
(
Ŷp̂⋆

)
+

12|A| ln
(

2|A|
β

)
mϵ

+
12|A| ln

(
2
β

)
kϵ

( part 1 of Lemma A.2)

⩽ êrr
(
Ŷp̂⋆

)
+

24|A| ln
(

2|A|
β

)
mϵ

+
24|A| ln

(
2
β

)
kϵ

( part 5 of Lemma A.2)

Also, for all a ̸= 0,

∆F̂Pa

(
Ŷp̃⋆

)
⩽ ∆F̃Pa

(
Ŷp̃⋆

)
+

4 ln
(

2|A|
B

)
min {q̃a0, q̃00}mϵ

+
4 ln

(
2
B

)
min {q̃a0, q̃00} kϵ

( part 4 of Lemma A.2)

⩽ γ +
8 ln

(
2|A|
B

)
min {q̃a0, q̃00}mϵ− 4 ln( 2|A|

β )
mϵ − 4 ln( 2

β )
kϵ

+
8 ln

(
2
B

)
min {q̃a0, q̃00} kϵ−

4 ln( 2|A|
β )

mϵ − 4 ln( 2
β )

kϵ

The last inequality follows from the fact that |q̃ay − q̂ay| ⩽
4 ln( 2|A|

β )
mϵ +

4 ln( 2
β )

kϵ
for all a, y. It follows similarly that,

∆T̂Pa

(
Ŷp̂⋆

)
⩽ γ+

8 ln(4|A|/β)

min {q̂a1, q̂01}mϵ− 4 ln( 2|A|
β )

mϵ − 4 ln( 2
β )

kϵ

+
8 ln

(
2
B

)
min {q̃a1, q̃01} kϵ−

4 ln( 2|A|
β )

mϵ − 4 ln( 2
β )

kϵ

Appendix B

L̂P: Empirical Linear Program:

argmin
p

êrr
(
Ŷp

)
s.t. ∀a ∈ ⊣AA ∆F̂Pa

(
Ŷp

)
⩽ γ

∆T̂Pa

(
Ŷp

)
⩽ γ

0 ⩽ pŷa ⩽ 1 ∀ŷ, a

êrr
(
Ŷp

)
=

∑
ŷ,a

(q̂ŷa0 − q̂ŷa1) · pŷa +
∑
ŷ,a

q̂ŷa1

∆F̂Pa

(
Ŷp

)
=

∣∣∣F̂Pa(Ŷ ) · p1a +
(
1− F̂Pa(Ŷ )

)
· p0a − F̂P0(Ŷ ) · p10 −

(
1− F̂P0(Ŷ )

)
· p00

∣∣∣
∆T̂Pa

(
Ŷp

)
=

∣∣∣T̂Pa(Ŷ ) · p1a +
(
1− T̂P1(Ŷ )

)
· p0a − T̂P0(Ŷ ) · p10 −

(
1− T̂P0(Ŷ )

)
· p00

∣∣∣
15
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